Ionization, Excitation and Dissociation at Collisions of e - Ar, O_2 and $O^+ - Ar$, N_2 .

Malkhaz Gochitashvili^a, Ramaz Lomsadze^a, Roman Kezerashvili^b,Nugzar Mosulishvili^a, David Kuparashvili^a.

e-mail: Malkhaz.gochitashvili@tsu.ge

^aPhysics Department, Faculty of Exact and Natural Sciences, Ivane Javakhishvili Tbilisi State University, Chavchavadze 1, Tbilisi 0128, Georgia.
^b Physics Department, New York City College of Technology, the City University of New York, Brooklyn, NY 11201, USA

Two mass- spectrometric devices, with two independent ion sources, are used to perform excitation measurement for O^+ -N₂ collision system. Quadruple filter technique has been used to measure a production of reactant O^+ ion by precisely controlled electron impact ionization and fragmentation cross section of oxygen molecules. Optical spectroscopy device, incorporated with a RF ion source, is used to reveal an exact range of working pressure, in ion source, with respect to control a contamination of primary beam. The fractional percentage of oxygen ions in RF source, being in the ground ⁴S and in the metastable ²D, ²P states, is estimated. The excitation cross section of molecule N₂⁺ ion for (0,0); (0,1) and (1,2) band system in collision of O⁺ ion with nitrogen N₂ molecules have been measured. A typical spectrum at fixed energy (E=5 keV) are shown in Fig.1.

Fig.1. Relative excitation cross section of the (0,0); (0,1) and (1,2) bands of N_2^+ ion and dissociative product of N^+ ionic line in $O^+ - N_2$ collision at fixed energy (E=5keV) and pressure in ion source (7. 10⁻³ Torr). Observed wavelength are as labeled on the figure.