ON THE SPACE OF GENERALIZED THETA-SERIES FOR CERTAIN QUADRATIC FORMS IN ANY NUMBER OF VARIABLES

Ketevan Shavgulidze

(Communicated by Federico Pellarin)

Abstract

An upper bound of the dimension of vector spaces of generalized theta-series corresponding to some nondiagonal quadratic forms in any number of variables is established. In a number of cases, an upper bound of the dimension of the space of theta-series with respect to the quadratic forms of five variables is improved and the basis of this space is constructed.

Mathematical Institute
Slovak Academy of Sciences

1. Introduction

Let

$$
Q(X)=Q\left(x_{1}, x_{2}, \ldots, x_{r}\right)=\sum_{1 \leq i \leq j \leq r} b_{i j} x_{i} x_{j}
$$

be an integer positive definite quadratic form of r variables and let $A=\left(a_{i j}\right)$ be the symmetric $r \times r$ matrix of the quadratic form $Q(X)$, where $a_{i i}=2 b_{i i}$ and $a_{i j}=a_{j i}=b_{i j}$, for $i<j$. If $X=\left(x_{1} \ldots x_{r}\right)^{T}$ denotes a column matrix and X^{T} its transpose, then $Q(X)=\frac{1}{2} X^{T} A X$. Let $A_{i j}$ denote the cofactor to the element $a_{i j}$ in A and $a_{i j}^{*}$ is the element of the inverse matrix A^{-1}.

A homogeneous polynomial $P(X)=P\left(x_{1}, \ldots, x_{r}\right)$ of degree ν with complex coefficients, satisfying the condition

$$
\begin{equation*}
\sum_{1 \leq i, j \leq r} a_{i j}^{*}\left(\frac{\partial^{2} P}{\partial x_{i} \partial x_{j}}\right)=0 \tag{1.1}
\end{equation*}
$$

is called a spherical polynomial of order ν with respect to $Q(X)$ (see [4]).
Let $\mathcal{P}(\nu, Q)$ denote the vector space over \mathbb{C} of spherical polynomials $P(X)$ of even order ν with respect to $Q(X)$.

Hecke [6] calculated the dimension of the space $\mathcal{P}(\nu, Q)$ and showed that

$$
\operatorname{dim} \mathcal{P}(\nu, Q)=\binom{\nu+r-1}{r-1}-\binom{\nu+r-3}{r-1}
$$

He formed a basis of the space of spherical polynomials of second order $(\nu=2)$ with respect to $Q(X)$.

KETEVAN SHAVGULIDZE

Lomadze 7] constructed a basis of the space of spherical polynomials of fourth order $(\nu=4)$ with respect to $Q(X)$. In the next section a basis of the space $\mathcal{P}(\nu, Q)$ is constructed with a simpler way.

Let

$$
\vartheta(\tau, P, Q)=\sum_{n \in \mathbb{Z}^{r}} P(n) z^{Q(n)}, \quad z=\mathrm{e}^{2 \pi \mathrm{i} \tau}, \quad \tau \in \mathbb{C}, \quad \operatorname{Im} \tau>0
$$

be the corresponding generalized r-fold theta-series. Schoeneberg 8 proved that function $\vartheta(\tau, P, Q)$ is a modular form of weight $-\left(\frac{r}{2}+\nu\right)$ with respect to congruence subgroup $\Gamma_{0}(N)$, where N is the least positive integer such that $N A^{-1}$ is again the even integral symmetric matrix. The map which assigns to each P in $\mathcal{P}(\nu, Q)$ the modular form $\vartheta(\tau, P, Q)$ is a linear transformation.

Let $T(\nu, Q)$ denote the vector space over \mathbb{C} of generalized multiple theta-series, i.e.,

$$
T(\nu, Q)=\{\vartheta(\tau, P, Q): P \in \mathcal{P}(\nu, Q)\}
$$

Gooding [4.5] calculated the dimension of the vector space $T(\nu, Q)$ for reduced binary quadratic form Q and obtained an upper bound of the dimension of the space $T(\nu, Q)$ for some diagonal quadratic form of r variables

$$
\begin{equation*}
\operatorname{dim} T(\nu, Q) \leq\binom{\frac{\nu}{2}+r-2}{r-2} \tag{1.2}
\end{equation*}
$$

In $9, \sqrt[10]{ }$, the upper bounds for the dimensions of the spaces $T(\nu, Q)$ for some ternary and quaternary quadratic forms are established, in a number of cases the dimensions are calculated and the bases of these spaces are formed.

Gaigalas [1]-3] obtained the upper bounds for the dimensions of the spaces $T(4, Q)$ and $T(6, Q)$ for some diagonal quadratic forms and presented the upper bounds of the dimensions of the spaces $T(\nu, Q)$ for some diagonal quadratic forms of six variables.

In this paper the upper bounds for the dimensions of the spaces $T(\nu, Q)$ for some nondiagonal quadratic forms of any number of variables are obtained. The dimension of the space $T(2, Q)$ is calculated and a basis of this space is constructed. In a number of cases the upper bounds for the dimensions of the spaces $T(\nu, Q)$ for some quadratic forms of five variables are improved.

In the sequel we use the following definition and results:
An integral $r \times r$ matrix U called an integral automorphism of the quadratic form $Q(X)$ in r variables if $U^{T} A U=A$.
Lemma 1.1 ([4] p. 37]). Let $Q(X)=Q\left(x_{1}, \ldots, x_{r}\right)$ be a positive definite quadratic form in r variables and $\bar{P}(X)=P\left(x_{1}, \ldots, x_{r}\right) \in P(\nu, Q)$. Let G be the set of all integral automorphisms of Q. Suppose

$$
\sum_{i=1}^{t} P\left(U_{i} X\right)=0 \quad \text { for some } U_{1}, \ldots, U_{t} \subseteq G
$$

then $\vartheta(\tau, P, Q)=0$.

2. The basis of the space $\mathcal{P}(\nu, Q)$

Let

$$
P(X)=P\left(x_{1}, x_{2}, x_{3}, \ldots, x_{r}\right)=\sum_{k=0}^{\nu} \sum_{i=0}^{k} \sum_{j=0}^{i} \ldots \sum_{l=0}^{m} a_{k i j \ldots l} x_{1}^{\nu-k} x_{2}^{k-i} x_{3}^{i-j} \ldots x_{r}^{l}
$$

be a spherical function of order ν with respect to the positive quadratic form $Q\left(x_{1}, x_{2}, x_{3}, \ldots, x_{r}\right)$ of r variables and

$$
L=\left(a_{000 \ldots 0}, a_{100 \ldots 0}, a_{110 \ldots 0}, a_{111 \ldots 0}, \ldots, a_{\nu \nu \nu \ldots \nu}\right)^{T}
$$

be the column vector, where $a_{k i j \ldots l}(\nu \geq k \geq i \geq j \geq \cdots \geq l \geq 0)$ are the coefficients of polynomial $P(X)$.

According to 1.1), the condition

$$
\frac{1}{|A|} \sum_{1 \leq i, j \leq r} A_{i j}\left(\frac{\partial^{2} P}{\partial x_{i} \partial x_{j}}\right)=0
$$

is satisfied. Considering

$$
\begin{aligned}
\frac{\partial^{2} P}{\partial x_{1}^{2}} & =\sum_{k=0}^{\nu} \sum_{i=0}^{k} \sum_{j=0}^{i} \ldots \sum_{l=0}^{m}(\nu-k)(\nu-k-1) a_{k i j \ldots l} x_{1}^{\nu-k-2} x_{2}^{k-i} x_{3}^{i-j} \ldots x_{r}^{l} \\
& =\sum_{k=1}^{\nu-1} \sum_{i=0}^{k-1} \sum_{j=0}^{i} \ldots \sum_{l=0}^{m}(\nu-k+1)(\nu-k) a_{k-1 i j \ldots l} x_{1}^{\nu-k-1} x_{2}^{k-i-1} x_{3}^{i-j} \ldots x_{r}^{l}
\end{aligned}
$$

and also obtain similar formulas for other second partial derivatives, then condition 1.1 takes the form

$$
\begin{aligned}
\frac{1}{|A|} \sum_{k=1}^{\nu-1} \sum_{i=0}^{k-1} \sum_{j=0}^{i} & \ldots \sum_{l=0}^{m}\left(A_{11}(\nu-k+1)(\nu-k) a_{k-1 i j \ldots l}+2 A_{12}(\nu-k)(k-i) a_{k i j \ldots l}\right. \\
& +2 A_{13}(\nu-k)(i-j+1) a_{k i+1 j \ldots l}+2 A_{14}(\nu-k)(j+1) a_{k i+1 j+1 \ldots l} \\
& \left.+\cdots+A_{r r}(l+2)(l+1) a_{k+1 i+2 j+2 \ldots l+2}\right) x_{1}^{\nu-k-1} x_{2}^{k-i-1} x_{3}^{i-j} \ldots x_{r}^{l}=0
\end{aligned}
$$

It follows that condition 1.1 in matrix notation has the following form

$$
S \cdot L=0
$$

where the matrix S has the form

$$
S=\left(\begin{array}{cccccccc}
A_{11} \nu(\nu-1) & 2 A_{12}(\nu-1) & 2 A_{13}(\nu-1) & 2 A_{14}(\nu-1) & \ldots & \ldots & \ldots & 0 \\
0 & A_{11}(\nu-1)(\nu-2) & \ldots & \ldots & \ldots & \ldots & \ldots & 0 \\
0 & 0 & A_{11}(\nu-1)(\nu-2) & \ldots & \ldots & \ldots & \ldots & 0 \\
0 & 0 & 0 & A_{11}(\nu-1)(\nu-2) & \ldots & \ldots & \ldots & 0 \\
\ldots & \ldots \\
0 & 0 & 0 & 0 & \ldots & 2 A_{11} & \ldots & A_{r r}(\nu-1) \nu
\end{array}\right)
$$

and is $\binom{\nu+r-3}{r-1} \times\binom{\nu+r-1}{r-1}$ matrix (the number of rows of the matrix S is equal to the number of (k, i, j, \ldots, l) with $0 \leq l \leq \cdots \leq j \leq i<k \leq \nu-1$, the number of columns is equal to the number of coefficients $a_{k i j \ldots l}$, i.e., to the number of (k, i, j, \ldots, l) with $\left.0 \leq l \leq \cdots \leq j \leq i \leq k \leq \nu\right)$.

We partition the matrix S into two matrices S_{1} and S_{2}, where S_{1} is the left square nondegenerate $\binom{\nu+r-3}{r-1} \times\binom{\nu+r-3}{r-1}$ matrix, it consists of the first $\binom{\nu+r-3}{r-1}$ columns of the matrix S; the matrix S_{2} consists of the last $\binom{\nu+r-1}{r-1}-\binom{\nu+r-3}{r-1}$ columns of the matrix S.

Similarly, we partition the matrix L into two matrices L_{1} and L_{2}, where L_{1} is the $\binom{\nu+r-3}{r-1} \times 1$ matrix, it consists of the upper $\binom{\nu+r-3}{r-1}$ elements of L; the matrix L_{2} consists of the lower $\binom{\nu+r-1}{r-1}-$ $\binom{\nu+r-3}{r-1}$ elements of the matrix L.

According to the new notation, the matrix equality has the form

$$
S_{1} L_{1}+S_{2} L_{2}=0, \quad \text { i.e., } \quad L_{1}=-S_{1}^{-1} S_{2} L_{2}
$$

It follows from this equality that the matrix L_{1} is expressed through the matrix L_{2}, and consequently, the first $\binom{\nu+r-3}{r-1}$ elements of the matrix L are expressed through its other elements.

Since the matrix L consists of the coefficients of the spherical polynomial $P(X)$, its first $\binom{\nu+r-3}{r-1}$ coefficients can be expressed through the last $\binom{\nu+r-1}{r-1}-\binom{\nu+r-3}{r-1}$ coefficients.

Hence, the polynomials

$$
\begin{align*}
& P_{\nu-1,00 \ldots 0}\left(a_{000 \ldots 0}^{(1)}, a_{100 \ldots 0}^{(1)}, \ldots, a_{\nu-2, \nu-2, \nu-2, \ldots, \nu-2}^{(1)}, 1,0,0, \ldots, 0\right), \\
& P_{\nu-1,10 \ldots 0}\left(a_{000 \ldots 0}^{(2)}, a_{100 \ldots 0}^{(2)}, \ldots, a_{\nu-2, \nu-2, \nu-2, \nu-2}^{(2)}, 0,1,0, \ldots, 0\right), \tag{2.1}\\
& \cdot \\
& P_{\nu, \nu, \nu, \ldots \nu}\left(a_{000 \ldots 0}^{(t)}, a_{100 \ldots 0}^{(t)}, \ldots, a_{\nu-2, \nu-2, \nu-2, \ldots, \nu-2}^{(t)}, 0,0,0, \ldots, 1\right),
\end{align*}
$$

where the first $\binom{\nu+r-3}{r-1}$ coefficients from $a_{000 \ldots 0}$ to $a_{\nu-2, \nu-2, \nu-2, \ldots, \nu-2}$ are calculated through other $\binom{\nu+r-1}{r-1}-\binom{\nu+r-3}{r-1}$ coefficients, form the basis of the space $\mathcal{P}(\nu, Q)$ (the coefficients of polynomial $P_{b c \ldots d}$ are given in the brackets, $a_{b c \ldots d}$ is equal to 1 and the rest of those coefficients for which b is $\nu-1$ or ν are equal to 0).

The construction of the matrix S and the spherical polynomials for small $\nu(\nu=4)$ and small $r(r=3)$ are considered in Appendix.

3. On the dimension of $T(\nu, Q)$ for certain quadratic forms in any number of variables

Consider the generalized r-fold theta-series

$$
\vartheta(\tau, P, Q)=\sum_{n \in \mathbb{Z}^{r}} P(n) z^{Q(n)}, \quad z=\mathrm{e}^{2 \pi \mathrm{i} \tau}
$$

Our goal is to construct a basis of the space of generalized theta-series with spherical polynomial P of order ν for quadratic form of r variables.

Let

$$
Q(X)=b_{11} x_{1}^{2}+b_{22} x_{2}^{2}+b_{33} x_{3}^{2}+\cdots+b_{r r} x_{r}^{2}
$$

$\left(0<b_{11}<b_{22}<\cdots<b_{r r}\right)$ be the diagonal quadratic form of r variables. The integral automorphisms of the quadratic form $Q(X)$ are

$$
U=\left(\begin{array}{ccccc}
e_{1} & 0 & 0 & \ldots & 0 \tag{3.1}\\
0 & e_{2} & 0 & \ldots & 0 \\
0 & 0 & e_{3} & \ldots & 0 \\
. & . & . & \ldots & . \\
0 & 0 & 0 & \ldots & e_{r}
\end{array}\right)
$$

where $e_{i}= \pm 1$.
We now consider all possible polynomials $P=P_{b c \ldots d}\left(U_{j} X\right)$, where P is a spherical polynomial of order ν with respect to $Q(X), P \in \mathcal{P}(\nu, Q)$ and U_{j} is an integral automorphism of the quadratic form $Q(X)$. We have to find which polynomials P satisfy equality

$$
\sum_{i=1}^{t} P\left(U_{i} X\right)=0 \quad \text { for some } U_{1}, \ldots, U_{t} \in G
$$

For such polynomials according to Lemma 1.1. $\vartheta(\tau, P, Q)=0$.

ON THE SPACE OF GENERALIZED THETA-SERIES

For example, if

$$
U_{1}=\left(\begin{array}{ccccc}
1 & 0 & 0 & \ldots & 0 \\
0 & 1 & 0 & \ldots & 0 \\
0 & 0 & 1 & \ldots & 0 \\
. & . & . & \ldots & . \\
0 & 0 & 0 & \ldots & -1
\end{array}\right)
$$

then

$$
P_{k i j \ldots l}(X)+P_{k i j \ldots l}\left(U_{1} X\right)=\sum_{k=0}^{\nu} \sum_{i=0}^{k} \sum_{j=0}^{i} \ldots \sum_{l=0}^{m}\left(1+(-1)^{l}\right) a_{k i j \ldots l} x_{1}^{\nu-k} x_{2}^{k-i} x_{3}^{i-j} \ldots x_{r}^{l}
$$

Equality

$$
P_{k i j \ldots l}(X)+P_{k i j \ldots l}\left(U_{1} X\right)=0
$$

takes place if and only if the condition

$$
\left(1+(-1)^{l}\right) a_{k i j \ldots l}=0
$$

is satisfied, that means the index l of the coefficient equal to one is odd. Similarly, it follows that if among the last $\binom{\nu+r-1}{r-1}-\binom{\nu+r-3}{r-1}$ coefficients of P, at least one of indices k, i, j, \ldots, l of the coefficient, equaled to one, is odd, then the spherical polynomial $P=P_{k i j \ldots l}$ satisfies the equality $\vartheta(\tau, P, Q)=0$. Hence, if theta-series are linearly independent, then the indices k, i, j, \ldots, l of the corresponding spherical polynomial P are even. Thus the maximal number of linearly independent theta-series is

$$
\sum_{i=0,2 \mid i}^{\nu} \sum_{j=0,2 \mid j}^{i} \ldots \sum_{m=0,2 \mid m}^{s} \sum_{l=0,2 \mid l}^{m} 1=\sum_{i=0,2 \mid i}^{\nu} \sum_{j=0,2 \mid j}^{i} \ldots \sum_{m=0,2 \mid m}^{s}\left(\frac{m}{2}+1\right)=\binom{\frac{\nu}{2}+r-2}{r-2}
$$

here $k=\nu$ is even.
We have shown inequality $\sqrt{1.2}$ and also showed that a basis of the space $T(\nu, Q)$ is among the theta-series $\vartheta(\tau, P, Q)$ with spherical polynomial $P=P_{k i j \ldots l}$ with even indices $k=\nu, i, j, \ldots l$.

Consider now the nondiagonal quadratic form

$$
Q_{1}(X)=b_{11} x_{1}^{2}+b_{22} x_{2}^{2}+b_{33} x_{3}^{2}+\cdots+b_{r r} x_{r}^{2}+b_{12} x_{1} x_{2}
$$

where $0<\left|b_{12}\right|<b_{11}<b_{22}<\cdots<b_{r r}$. The integral automorphisms of the quadratic form $Q_{1}(X)$ are

$$
\left(\begin{array}{ccccc}
e_{1} & 0 & 0 & \ldots & 0 \tag{3.2}\\
0 & e_{1} & 0 & \ldots & 0 \\
0 & 0 & e_{2} & \ldots & 0 \\
. & . & . & \ldots & . \\
0 & 0 & 0 & \ldots & e_{r-1}
\end{array}\right)
$$

where $e_{i}= \pm 1$. Consider all possible polynomials $P_{k i j \ldots l}\left(U_{h} X\right)$, where $P_{k i j \ldots l}$ are spherical polynomials of order ν with respect to $Q_{1}(X), P_{k i j \ldots l} \in \mathcal{P}\left(\nu, Q_{1}\right)$ and U_{h} is an integral automorphism of the quadratic form $Q_{1}(X)$. We have to find which polynomials $P_{k i j \ldots l}$ satisfy equality

$$
\begin{equation*}
P_{k i j \ldots l}(X)+P_{k i j \ldots l}\left(U_{h} X\right)=0 \tag{3.3}
\end{equation*}
$$

Equality (3.3) takes place if and only if the coefficients satisfy the equality

$$
\begin{equation*}
\left(1+(-1)^{w}\right) a_{k i j \ldots l}=0 \tag{3.4}
\end{equation*}
$$

where $w=i, j, \ldots, l$. Using the construction of a basis of the space of spherical functions, it is sufficient to show that (3.4) is true for the last coefficients from $a_{\nu-1,0,0 \ldots 0}$ to $a_{\nu \nu \nu \ldots \nu}$, i.e., when $k=\nu-1, \nu ; i=0,1, \ldots, k, j=0,1, \ldots, i, \ldots, l=0,1, \ldots, m$. It follows that if among the last
coefficients $a_{k i j \ldots l}$ of P, for which k is $\nu-1$ or ν at least one of indices i, j, \ldots, l is odd, then for the spherical polynomial $P=P_{k i j \ldots l}$ we get $\vartheta(\tau, P, Q)=0$.

Hence, if theta-series are linearly independent, then the indices i, j, \ldots, l of the corresponding spherical polynomial P is even. Calculate how many coefficients $a_{k i j \ldots l}$ with $\nu-1 \leq k \leq \nu, 0 \leq$ $i \leq k, \ldots, 0 \leq l \leq m$ have the indices $i, j \ldots$ or l even. We have the following cases:
a) for $k=\nu-1$ we obtain

$$
\sum_{i=0,2 \mid i}^{\nu-2} \sum_{j=0,2 \mid j}^{i} \ldots \sum_{m=0,2 \mid m}^{s} \sum_{l=0,2 \mid l}^{m} 1=\sum_{i=0,2 \mid i}^{\nu-2} \sum_{j=0,2 \mid j}^{i} \ldots \sum_{m=0,2 \mid m}^{s}\left(\frac{m}{2}+1\right)=\binom{\frac{\nu-2}{2}+r-2}{r-2}
$$

b) for $k=\nu$ it follows that

$$
\sum_{i=0,2 \mid i}^{\nu} \sum_{j=0,2 \mid j}^{i} \ldots \sum_{m=0,2 \mid m}^{s} \sum_{l=0,2 \mid l}^{m} 1=\binom{\frac{\nu}{2}+r-2}{r-2}
$$

Hence, the maximal number of theta-series with corresponding spherical polynomial $P_{k i j \ldots l}(X)$ with even indices i, j, \ldots, l is

$$
\binom{\frac{\nu-2}{2}+r-2}{r-2}+\binom{\frac{\nu}{2}+r-2}{r-2}=\frac{1}{r-2}\binom{\frac{\nu}{2}+r-3}{r-3}(\nu+r-2)
$$

Thus we have the following
Theorem 3.1. Let $Q_{1}(X)$ be the nondiagonal quadratic form of r variables, given by $Q_{1}(X)=$ $b_{11} x_{1}^{2}+b_{22} x_{2}^{2}+b_{33} x_{3}^{2}+\cdots+b_{r r} x_{r}^{2}+b_{12} x_{1} x_{2}$ then

$$
\begin{equation*}
\operatorname{dim} T\left(\nu, Q_{1}\right) \leq \frac{1}{r-2}\binom{\frac{\nu}{2}+r-3}{r-3}(\nu+r-2) \tag{3.5}
\end{equation*}
$$

We now construct the basis of the space $T\left(\nu, Q_{1}\right)$, when $\nu=2$. For quadratic form $Q_{1}(X)$ we have

$$
\begin{aligned}
& |A|=\operatorname{det} A=2^{r-2}\left(4 b_{11} b_{22}-b_{12}^{2}\right) b_{33} \ldots b_{r r}, \quad a_{11}^{*}=\frac{2 b_{22}}{4 b_{11} b_{22}-b_{12}^{2}} \\
& a_{12}^{*}=a_{21}^{*}=-\frac{b_{12}}{4 b_{11} b_{22}-b_{12}^{2}}, \quad a_{22}^{*}=\frac{2 b_{11}}{4 b_{11} b_{22}-b_{12}^{2}}, \quad a_{33}^{*}=\frac{1}{2 b_{33}}, \\
& a_{44}^{*}=\frac{1}{2 b_{44}}, \ldots, \quad a_{r r}^{*}=\frac{1}{2 b_{r r}}, \quad \text { and other } \quad a_{i j}^{*}=0 \text { for } \quad i \neq j
\end{aligned}
$$

It is easy to verify, that the spherical polynomials (2.1) of second order:

$$
\begin{aligned}
& P_{100 \ldots 0}=\frac{b_{12}}{2 b_{22}} x_{1}^{2}+x_{1} x_{2}, \quad P_{110 \ldots 0}=x_{1} x_{3} \\
& P_{1110 \ldots 0}=x_{1} x_{4}, \quad \ldots, \quad P_{200 \ldots 0}=-\frac{b_{11}}{b_{22}} x_{1}^{2}+x_{2}^{2} \\
& P_{210 \ldots 0}=x_{2} x_{3}, \quad P_{220 \ldots 0}=-\frac{4 b_{11} b_{22}-b_{12}^{2}}{4 b_{22} b_{33}} x_{1}^{2}+x_{3}^{2}, \quad P_{221 \ldots 0}=x_{3} x_{4}, \\
& P_{222 \ldots 0}=-\frac{4 b_{11} b_{22}-b_{12}^{2}}{4 b_{22} b_{44}} x_{1}^{2}+x_{4}^{2}, \quad \ldots, \quad P_{222 \ldots 2}=-\frac{4 b_{11} b_{22}-b_{12}^{2}}{4 b_{22} b_{r r}} x_{1}^{2}+x_{r}^{2}
\end{aligned}
$$

form the basis of the space of spherical polynomials of second order with respect to $Q_{1}(x)$.

ON THE SPACE OF GENERALIZED THETA-SERIES

Now we construct the corresponding generalized theta-series. Consider all possible polynomials $P_{k i j \ldots l}$, with even indices i, j, \ldots, l and $k=\nu-1, \nu$; their number is r :

$$
\begin{aligned}
& \vartheta\left(\tau, P_{100 \ldots 0}, Q_{1}\right)=\sum_{n=1}^{\infty}\left(\sum_{Q_{1}(x)=n} P_{100 \ldots 0}(x)\right) z^{n}=\sum_{n=1}^{\infty}\left(\sum_{Q_{1}(x)=n}\left(\frac{b_{12}}{2 b_{22}} x_{1}^{2}+x_{1} x_{2}\right)\right) z^{n} \\
& =\frac{b_{12}}{b_{22}} z^{b_{11}}+\cdots+0 z^{b_{22}}+\cdots+0 z^{b_{33}}+\cdots+0 z^{b_{44}}+\cdots+0 z^{b_{r r}}+\cdots, \\
& \vartheta\left(\tau, P_{200 \ldots 0}, Q_{1}\right)=\sum_{n=1}^{\infty}\left(\sum_{Q_{1}(x)=n} P_{200 \ldots 0}(x)\right) z^{n}=\sum_{n=1}^{\infty}\left(\sum_{Q_{1}(x)=n}\left(-\frac{b_{11}}{b_{22}} x_{1}^{2}+x_{2}^{2}\right)\right) z^{n} \\
& =-\frac{2 b_{11}}{b_{22}} z^{b_{11}}+\cdots+2 z^{b_{22}}+\cdots+0 z^{b_{33}}+\cdots+0 z^{b_{44}}+\cdots+0 z^{b_{r r}}+\ldots, \\
& \vartheta\left(\tau, P_{220 \ldots 0}, Q_{1}\right)=\sum_{n=1}^{\infty}\left(\sum_{Q_{1}(x)=n} P_{220 \ldots 0}(x)\right) z^{n}=\sum_{n=1}^{\infty}\left(\sum_{Q_{1}(x)=n}\left(-\frac{4 b_{11} b_{22}-b_{12}^{2}}{4 b_{22} b_{33}} x_{1}^{2}+x_{3}^{2}\right)\right) z^{n} \\
& =-\frac{4 b_{11} b_{22}-b_{12}^{2}}{2 b_{22} b_{33}} z^{b_{11}}+\ldots+0 z^{b_{22}}+\ldots+2 z^{b_{33}}+\ldots+0 z^{b_{44}}+\ldots+0 z^{b_{r r}}+\ldots, \\
& \vartheta\left(\tau, P_{222 \ldots 2}, Q_{1}\right)=\sum_{n=1}^{\infty}\left(\sum_{Q_{1}(x)=n} P_{222 \ldots 2}(x)\right) z^{n}=\sum_{n=1}^{\infty}\left(\sum_{Q_{1}(x)=n}\left(-\frac{4 b_{11} b_{22}-b_{12}^{2}}{4 b_{22} b_{r r}} x_{1}^{2}+x_{r}^{2}\right)\right) z^{n} \\
& =-\frac{4 b_{11} b_{22}-b_{12}^{2}}{2 b_{22} b_{r r}} z^{b_{11}}+\cdots+0 z^{b_{22}}+\cdots+0 z^{b_{33}}+\cdots+0 z^{b_{44}}+\cdots+2 z^{b_{r r}}+\ldots .
\end{aligned}
$$

These generalized theta-series are linearly independent since the determinant constructed from the coefficients of these theta-series is not equal to zero. By virtue of (3.5) we have $\operatorname{dim} T\left(2, Q_{1}\right) \leq r$. Hence these theta-series form the basis of the space $T\left(2, Q_{1}\right)$. We have the following
Theorem 3.2. Let $Q_{1}(X)$ be the nondiagonal quadratic form of r variables, given by $Q_{1}(X)=$ $b_{11} x_{1}^{2}+b_{22} x_{2}^{2}+b_{33} x_{3}^{2}+\cdots+b_{r r} x_{r}^{2}+b_{12} x_{1} x_{2}$, then $\operatorname{dim} T\left(2, Q_{1}\right)=r$ and the generalized theta-series with spherical polynomials $P_{k i j \ldots l}(k=1$ or $2 ; i, j, \ldots, l$ are even):

$$
\vartheta\left(\tau, P_{100 \ldots 0}, Q_{1}\right), \quad \vartheta\left(\tau, P_{200 \ldots 0}, Q_{1}\right), \quad \vartheta\left(\tau, P_{220 \ldots 0}, Q_{1}\right), \quad \vartheta\left(\tau, P_{222 \ldots 0}, Q_{1}\right), \ldots, \vartheta\left(\tau, P_{222 \ldots 2}, Q_{1}\right)
$$

form the basis of the space $T\left(2, Q_{1}\right)$.
Now consider the quadratic form of five variables

$$
Q_{2}=b_{11} x_{1}^{2}+b_{22} x_{2}^{2}+b_{33} x_{3}^{2}+b_{44}\left(x_{4}^{2}+x_{5}^{2}\right)
$$

where $0<b_{11}<b_{22}<b_{33}<b_{44}=b_{55}$.
We construct the integral automorphisms U of the quadratic form Q_{2}. Since

$$
\begin{aligned}
& b_{11}=Q_{2}(\pm 1,0,0,0,0), \quad b_{22}=Q_{2}(0, \pm 1,0,0,0), \quad b_{33}=Q_{2}(0,0, \pm 1,0,0) \\
& b_{44}=b_{55}=Q_{2}(0,0,0, \pm 1,0)=Q_{2}(0,0,0,0, \pm 1)
\end{aligned}
$$

It is easy to verify that the integral automorphisms of the quadratic form Q_{2} are the automorphisms (3.1) and the automorphisms

$$
\left(\begin{array}{ccccc}
e_{1} & 0 & 0 & 0 & 0 \tag{3.6}\\
0 & e_{2} & 0 & 0 & 0 \\
0 & 0 & e_{3} & 0 & 0 \\
0 & 0 & 0 & 0 & e_{4} \\
0 & 0 & 0 & e_{5} & 0
\end{array}\right) \quad\left(e_{i}= \pm 1, \quad i=1,2,3,4,5\right)
$$

From the automorphisms (3.6) we use only

$$
U_{2}=\left(\begin{array}{lllll}
1 & 0 & 0 & 0 & 0 \tag{3.7}\\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 0
\end{array}\right)
$$

The automorphisms of the quadratic form Q are also automorphisms of the quadratic form Q_{2}. Therefore using $\sqrt{1.2}$ we have

$$
\begin{equation*}
\operatorname{dim} T\left(\nu, Q_{2}\right) \leq\binom{\frac{\nu}{2}+r-2}{r-2}=\binom{\frac{\nu}{2}+3}{3} \tag{3.8}
\end{equation*}
$$

We improve this estimation. From (3.7) we have
$P\left(U_{2} X\right)=\sum_{k=0}^{\nu} \sum_{i=0}^{k} \sum_{j=0}^{i} \sum_{l=0}^{j} a_{k i j l}^{(h)} x_{1}^{\nu-k} x_{2}^{k-i} x_{3}^{i-j} x_{5}^{j-l} x_{4}^{l}=\sum_{k=0}^{\nu} \sum_{i=0}^{k} \sum_{j=0}^{i} \sum_{l=0}^{j} a_{k i j l}^{(h)} x_{1}^{\nu-k} x_{2}^{k-i} x_{3}^{i-j} x_{4}^{j-(j-l)} x_{5}^{j-l}$.
From here it follows that if all the last coefficients of the basis polynomial $P(X)$ are equal to zero, except one $a_{k i j l}^{(h)}=1$, then all the last coefficients of polynomial $P\left(U_{2} X\right)$ are equal to zero, except one $a_{k, i, j, j-l}^{(s)}=1$. Hence, $P_{k i j l}\left(U_{2} X\right)=P_{k i j j-l}(X)$ is a basis polynomial of the space $\mathcal{P}\left(\nu, Q_{2}\right)$. Further, it is known ([4, p. 38]) that

$$
\vartheta\left(\tau, P(X), Q_{2}\right)=\vartheta\left(\tau, P\left(U_{2} X\right), Q_{2}\right)
$$

thus the theta-series $\vartheta\left(\tau, P(X), Q_{2}\right)$ and $\vartheta\left(\tau, P\left(U_{2} X\right), Q_{2}\right)$, corresponding to different basis polynomials $P(X)=P_{k i j l}(X)$ and $P\left(U_{2} X\right)=P_{k i j j-l}(X)$, are linearly dependent.

Calculate how many such linearly dependent theta-series we have. Let k, i, j and l be even (otherwise, it can be shown similarly to $Q(x)$ that $\vartheta\left(\tau, P, Q_{2}\right)=0$), i.e., $k=\nu, 2|i, 2| j, 2 \mid l$ and l takes

$$
\sum_{2 \mid l, l=0}^{j} 1=\frac{j}{2}+1
$$

even values for each even j. Hence we have

$$
\left[\frac{1}{2}\left(\frac{j}{2}+1\right)\right]= \begin{cases}\frac{j}{4} & \text { if } j \equiv 0(\bmod 4) \\ \frac{j+2}{4} & \text { if } j \equiv 2(\bmod 4)\end{cases}
$$

linearly dependent theta-series for each even j. Similarly, for each even i we have

$$
\sum_{j=0, j \equiv 0(\bmod 4)}^{i} \frac{j}{4}+\sum_{j=0, j \equiv 2(\bmod 4)}^{i} \frac{j+2}{4}= \begin{cases}\left(1+\frac{i}{4}\right) \frac{i}{4} & \text { if } i \equiv 0(\bmod 4) \\ \left(\frac{i+2}{4}\right)^{2} & \text { if } i \equiv 2(\bmod 4)\end{cases}
$$

linearly dependent theta-series. The number of linearly dependent theta-series for even ν is

$$
\sum_{i=0, i \equiv 0(\bmod 4)}^{\nu}\left(1+\frac{i}{4}\right) \frac{i}{4}+\sum_{i=0, i \equiv 2(\bmod 4)}^{\nu}\left(\frac{i+2}{4}\right)^{2}= \begin{cases}\frac{1}{24}\left(\frac{\nu}{4}+1\right) \nu(\nu+5) & \text { if } \nu \equiv 0(\bmod 4) \tag{3.9}\\ \frac{1}{24}\left(\frac{\nu}{2}+1\right)\left(\frac{\nu}{2}+3\right)(\nu+1) & \text { if } \nu \equiv 2(\bmod 4)\end{cases}
$$

ON THE SPACE OF GENERALIZED THETA-SERIES

Hence, from (3.8) for the maximal number of linearly independent theta-series we get

$$
\operatorname{dim} T\left(\nu, Q_{2}\right) \leq \begin{cases}\binom{\frac{\nu}{2}+3}{3}-\frac{1}{24}\left(\frac{\nu}{4}+1\right) \nu(\nu+5) & \text { if } \nu \equiv 0(\bmod 4) \\ \binom{\frac{\nu}{2}+3}{3}-\frac{1}{24}\left(\frac{\nu}{2}+1\right)\left(\frac{\nu}{2}+3\right)(\nu+1) & \text { if } \nu \equiv 2(\bmod 4)\end{cases}
$$

Thus, we have the following theorem.
Theorem 3.3. Let $Q_{2}(X)$ be the diagonal quadratic form of five variables, given by $Q_{2}(X)=$ $b_{11} x_{1}^{2}+b_{22} x_{2}^{2}+b_{33} x_{3}^{2}+b_{44}\left(x_{4}^{2}+x_{5}^{2}\right)$, then

$$
\operatorname{dim} T\left(\nu, Q_{2}\right) \leq \begin{cases}\frac{1}{6}\left(\frac{\nu}{4}+1\right)\left(\frac{\nu}{4}+2\right)(\nu+3) & \text { if } \nu \equiv 0(\bmod 4) \\ \frac{1}{24}\left(\frac{\nu}{2}+1\right)\left(\frac{\nu}{2}+3\right)(\nu+7) & \text { if } \nu \equiv 2(\bmod 4)\end{cases}
$$

Similarly, consider the nondiagonal quadratic form of five variables

$$
Q_{3}=b_{11} x_{1}^{2}+b_{22} x_{2}^{2}+b_{33} x_{3}^{2}+b_{44}\left(x_{4}^{2}+x_{5}^{2}\right)+b_{12} x_{1} x_{2}
$$

where $0<\left|b_{12}\right|<b_{11}<b_{22}<b_{33}<b_{44}=b_{55}$.
We construct the integral automorphisms U of the quadratic form Q_{3}. It is easy to verify that the integral automorphisms of the quadratic form Q_{3} are the automorphisms (3.2) and the following automorphisms

$$
\left(\begin{array}{ccccc}
e_{1} & 0 & 0 & 0 & 0 \tag{3.10}\\
0 & e_{1} & 0 & 0 & 0 \\
0 & 0 & e_{2} & 0 & 0 \\
0 & 0 & 0 & 0 & e_{3} \\
0 & 0 & 0 & e_{4} & 0
\end{array}\right) \quad\left(e_{i}= \pm 1, \quad i=1,2,3,4\right)
$$

From automorphisms 3.10 we use only U_{2} (see 3.7).
The automorphism of the quadratic form Q_{1} are also the automorphisms of the quadratic form Q_{3}, therefore using (3.5 we have

$$
\begin{equation*}
\operatorname{dim} T\left(\nu, Q_{3}\right) \leq \frac{1}{r-2}\binom{\frac{\nu}{2}+r-3}{r-3}(\nu+r-2)=\frac{\nu+3}{3}\binom{\frac{\nu}{2}+2}{2} \tag{3.11}
\end{equation*}
$$

We improve this estimation. From (3.7) it follows that
$P\left(U_{2} X\right)=\sum_{k=0}^{\nu} \sum_{i=0}^{k} \sum_{j=0}^{i} \sum_{l=0}^{j} a_{k i j l}^{(h)} x_{1}^{\nu-k} x_{2}^{k-i} x_{3}^{i-j} x_{5}^{j-l} x_{4}^{l}=\sum_{k=0}^{\nu} \sum_{i=0}^{k} \sum_{j=0}^{i} \sum_{l=0}^{j} a_{k i j l}^{(h)} x_{1}^{\nu-k} x_{2}^{k-i} x_{3}^{i-j} x_{4}^{j-(j-l)} x_{5}^{j-l}$.
From here, $P\left(U_{2} X\right)$ is a basis polynomial of the space $\mathcal{P}\left(\nu, Q_{3}\right)$. Further, it is known (4, p. 38]) that

$$
\vartheta\left(\tau, P(X), Q_{3}\right)=\vartheta\left(\tau, P\left(U_{2} X\right), Q_{3}\right)
$$

Thus the theta-series $\vartheta\left(\tau, P(X), Q_{3}\right)$ and $\vartheta\left(\tau, P\left(U_{2} X\right), Q_{3}\right)$, corresponding to the different basis polynomials $P(X)=P_{k i j l}(X)$ and $P\left(U_{2} X\right)=P_{k i j j-l}(X)$, are linearly dependent.

Calculate how many such linearly dependent theta-series we have. Let i, j and l be even (otherwise, it can be shown similarly to $Q(x)$ that $\vartheta\left(\tau, P, Q_{3}\right)=0$, i.e., $2|i, 2| j, 2 \mid l$.

For $k=\nu-1$ the number of linearly dependent theta-series is

$$
\sum_{i=0, i \equiv 0(\bmod 4)}^{\nu-2}\left(1+\frac{i}{4}\right) \frac{i}{4}+\sum_{i=0,}^{\nu-2}\left(\frac{i+2}{4}\right)^{2}= \begin{cases}\frac{1}{24} \frac{\nu}{2}\left(\frac{\nu}{2}+2\right)(\nu-1) & \text { if } \nu \equiv 0(\bmod 4) \\ \frac{1}{24}\left(\frac{\nu}{2}-1\right)\left(\frac{\nu}{2}+1\right)(\nu+3) & \text { if } \nu \equiv 2(\bmod 4)\end{cases}
$$

KETEVAN SHAVGULIDZE

For $k=\nu$ for the number of linearly dependent theta-series we have estimation 3.9 .
Hence the number of linearly dependent theta-series for $k=\nu-1$ and $k=\nu$ all is

$$
\frac{\nu}{12}\left(\frac{\nu}{2}+1\right)\left(\frac{\nu}{2}+2\right)
$$

and for the maximal number of linearly independent theta-series from 3.11 we get

$$
\operatorname{dim} T\left(\nu, Q_{3}\right) \leq \frac{\nu+3}{3}\binom{\frac{\nu}{2}+2}{2}-\frac{\nu}{12}\left(\frac{\nu}{2}+1\right)\left(\frac{\nu}{2}+2\right)=\binom{\frac{\nu}{2}+3}{3} .
$$

Thus we have the following
Theorem 3.4. Let $Q_{3}(X)$ be the nondiagonal quadratic form of five variables, given by $Q_{3}(X)=$ $b_{11} x_{1}^{2}+b_{22} x_{2}^{2}+b_{33} x_{3}^{2}+b_{44}\left(x_{4}^{2}+x_{5}^{2}\right)+b_{12} x_{1} x_{2}$, then

$$
\operatorname{dim} T\left(\nu, Q_{3}\right) \leq\binom{\frac{\nu}{2}+3}{3}
$$

Acknowledgement. I am very grateful to the anonymous reviewers for valuable comments concerning this work.

REFERENCES

[1] GAIGALAS, E.: On the dimension of some spaces of generalized theta-series, Siauliai Math. Sem. 3(11) (2008), 79-84.
[2] GAIGALAS, E.: On the dimension of some spaces of generalized theta-series, Lith. Math. J. 50(2) (2010), 179-186.
[3] GAIGALAS, E.: The upper bound for the dimension of the space of theta-series, Lith. Math. J. 56(3) (2016), 291-297.
[4] GOODING, F.: Modular forms arising from spherical polynomials and positive definite quadratic forms, J. Number Theory 9 (1977), 36-47.
[5] GOODING, F.: Modular Forms Arising from Spherical Polynomials and Positive Definite Quadratic Forms, Ph. D. Thesis, University of Wisconsin, 1971.
[6] HECKE, E.: Mathematische Werke, Vandenhoeck und Ruprecht, Göttingen, 1970.
[7] LOMADZE, G.: On the basis of the space of fourth order spherical functions with respect to a positive quadratic form, Bull. Georgian Natl. Acad. Sci. SSR 69 (1973), 533-536 (in Russian).
[8] SCHOENBERG, B.: Das Verhalten von Mehrfachen Thetareihen bei Modulsubsitutionen, Math. Ann. 116 (1939), 511-523.
[9] SHAVGULIDZE, K.: On the dimension of some spaces of generalized theta-series, Lith. Math. J. 53(2) (2013), 235-240.
[10] SHAVGULIDZE, K.: On the dimension of spaces of generalized quaternary theta-series, Proc. I. Vekua Inst. Appl. Math. 59-60 (2009-2010), 60-75.

Appendix

Now consider a full example with small $\nu(\nu=4)$ and small $r(r=3)$ to clarify the whole picture.

For quadratic form $Q_{1}\left(x_{1}, x_{2}, x_{3}\right)=b_{11} x_{1}^{2}+b_{22} x_{2}^{2}+b_{33} x_{3}^{2}+b_{12} x_{1} x_{2}$ we have $|A|=\operatorname{det} A=$ $2 b_{33}\left(4 b_{11} b_{22}-b_{12}^{2}\right), \quad A_{11}=4 b_{22} b_{33}, \quad A_{12}=-2 b_{12} b_{33}, \quad A_{22}=4 b_{11} b_{33}, \quad A_{13}=A_{23}=0, \quad A_{33}=$ $4 b_{11} b_{22}-b_{12}^{2}$.

Let

$$
P(X)=P\left(x_{1}, x_{2}, x_{3}\right)=\sum_{k=0}^{\nu} \sum_{i=0}^{k} \sum_{j=0}^{i} a_{k i} x_{1}^{\nu-k} x_{2}^{k-i} x_{3}^{i}
$$

ON THE SPACE OF GENERALIZED THETA-SERIES

be a spherical function of order ν with respect to the ternary quadratic form $Q_{1}\left(x_{1}, x_{2}, x_{3}\right)$ and

$$
L=\left(\begin{array}{lllllllll}
a_{00} & a_{10} & a_{11} & a_{20} & a_{21} & a_{22} & a_{30} & \ldots & a_{\nu \nu}
\end{array}\right)^{T}
$$

be a column vector, where $a_{k i}(\nu \geq k \geq i \geq 0)$ are the coefficients of polynomial $P\left(x_{1}, x_{2}, x_{3}\right)$.
The condition (1) for the quadratic form $Q_{1}\left(x_{1}, x_{2}, x_{3}\right)$ takes the form

$$
\begin{array}{r}
\frac{1}{|A|} \sum_{k=1}^{\nu-1} \sum_{i=0}^{k-1}\left(A_{11}(\nu-k+1)(\nu-k) a_{k-1 i}+2 A_{12}(\nu-k)(k-i) a_{k i}\right. \\
+2 A_{13}(\nu-k)(i+1) a_{k i+1}+A_{22}(k-i)(k-i+1) a_{k+1 i} \\
\left.+2 A_{23}(k-i)(i+1) a_{k+1 i+1}+A_{33}(i+2)(i+1) a_{k+1 i+2}\right) x_{1}^{\nu-k-1} x_{2}^{k-i-1} x_{3}^{i}=0
\end{array}
$$

In the matrix equation

$$
S \cdot L=0
$$

for $\nu=4$ the matrix S has the following form

$$
S=\left(\begin{array}{ccccccccccccccc}
12 A_{11} & 6 A_{12} & 0 & 2 A_{22} & 0 & 2 A_{33} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 6 A_{11} & 0 & 8 A_{12} & 0 & 0 & 6 A_{22} & 0 & 2 A_{33} & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 6 A_{11} & 0 & 4 A_{12} & 0 & 0 & 2 A_{22} & 0 & 6 A_{33} & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 2 A_{11} & 0 & 0 & 6 A_{12} & 0 & 0 & 0 & 12 A_{22} & 0 & 2 A_{33} & 0 & 0 \\
0 & 0 & 0 & 0 & 2 A_{11} & 0 & 0 & 4 A_{12} & 0 & 0 & 0 & 6 A_{22} & 0 & 6 A_{33} & 0 \\
0 & 0 & 0 & 0 & 0 & 2 A_{11} & 0 & 0 & 2 A_{12} & 0 & 0 & 0 & 2 A_{22} & 0 & 12 A_{33}
\end{array}\right) .
$$

Consider all possible polynomials $P_{k i}$, with even indices i and $k=\nu-1, \nu$; their number is 5 for $\nu=4$:

$$
\begin{aligned}
P_{30}= & \frac{b_{12}\left(b_{12}^{2}-2 b_{11} b_{22}\right)}{4 b_{22}^{3}} x_{1}^{4}+\frac{b_{12}^{2}-b_{11} b_{22}}{b_{22}^{2}} x_{1}^{3} x_{2}+\frac{3 b_{12}}{2 b_{22}} x_{1}^{2} x_{2}^{2}+x_{1} x_{2}^{3} \\
P_{32}= & \frac{b_{12}\left(b_{12}^{2}-4 b_{11} b_{22}\right)}{24 b_{22}^{2} b_{33}} x_{1}^{4}+\frac{b_{12}^{2}-4 b_{11} b_{22}}{12 b_{22} b_{33}} x_{1}^{3} x_{2}+\frac{b_{12}}{2 b_{22}} x_{1}^{2} x_{3}^{2}+x_{1} x_{2} x_{3}^{2} \\
P_{40}= & -\frac{b_{11}\left(b_{12}^{2}-b_{11} b_{22}\right)}{b_{22}^{3}} x_{1}^{4}-\frac{4 b_{11} b_{12}}{b_{22}^{2}} x_{1}^{3} x_{2}-\frac{6 b_{11}}{b_{22}} x_{1}^{2} x_{2}^{2}+x_{2}^{4} \\
P_{42}= & \frac{\left(b_{12}^{2}-4 b_{11} b_{22}\right)\left(b_{12}^{2}-2 b_{11} b_{22}\right)}{24 b_{22}^{3} b_{33}} x_{1}^{4}+\frac{b_{12}\left(b_{12}^{2}-4 b_{11} b_{22}\right)}{6 b_{22}^{2} b_{33}} x_{1}^{3} x_{2} \\
& +\frac{b_{12}^{2}-4 b_{11} b_{22}}{4 b_{22} b_{33}} x_{1}^{2} x_{2}^{2}-\frac{b_{11}}{b_{22}} x_{1}^{2} x_{3}^{2}+x_{2}^{2} x_{3}^{2} \\
P_{44}= & \frac{\left(b_{12}^{2}-4 b_{11} b_{22}\right)^{2}}{16 b_{22}^{2} b_{33}^{2}} x_{1}^{4}+\frac{3\left(b_{12}^{2}-4 b_{11} b_{22}\right)}{2 b_{22} b_{33}} x_{1}^{2} x_{3}^{2}+x_{3}^{4}
\end{aligned}
$$

Now we construct the corresponding generalized theta-series:

$$
\begin{aligned}
l \vartheta\left(\tau, P_{30}, Q_{1}\right)= & \sum_{n=1}^{\infty}\left(\sum_{Q_{1}(x)=n} P_{30}(x)\right) z^{n}=\frac{b_{12}\left(b_{12}^{2}-2 b_{11} b_{22}\right)}{2 b_{22}^{3}} z^{b_{11}}+\cdots+0 z^{b_{22}}+\ldots \\
& +0 z^{b_{33}}+\cdots+\frac{b_{12}\left(b_{12}^{2}-2 b_{11} b_{22}\right)}{b_{22}^{3}} z^{b_{11}+b_{33}}+\cdots+0 z^{b_{22}+b_{33}}+\ldots
\end{aligned}
$$

$$
\begin{aligned}
\vartheta\left(\tau, P_{32}, Q_{1}\right)= & \sum_{n=1}^{\infty}\left(\sum_{Q_{1}(x)=n} P_{32}(x)\right) z^{n}=\frac{b_{12}\left(b_{12}^{2}-4 b_{11} b_{22}\right)}{12 b_{22}^{2} b_{33}} z^{b_{11}}+\cdots+0 z^{b_{22}}+\ldots \\
& +0 z^{b_{33}}+\cdots+\left(\frac{b_{12}\left(b_{12}^{2}-4 b_{11} b_{22}\right)}{6 b_{22}^{2} b_{33}}+\frac{2 b_{12}}{b_{22}}\right) z^{b_{11}+b_{33}}+\cdots+0 z^{b_{22}+b_{33}}+\ldots, \\
\vartheta\left(\tau, P_{40}, Q_{1}\right)= & \sum_{n=1}^{\infty}\left(\sum_{Q_{1}(x)=n} P_{40}(x)\right) z^{n}=-\frac{2 b_{11}\left(b_{12}^{2}-b_{11} b_{22}\right)}{b_{22}^{3}} z^{b_{11}}+\cdots+2 z^{b_{22}}+\ldots \\
& +0 z^{b_{33}}+\cdots-\frac{4 b_{11}\left(b_{12}^{2}-b_{11} b_{22}\right)}{b_{22}^{3}} z^{b_{11}+b_{33}}+\cdots+4 z^{b_{22}+b_{33}}+\ldots, \\
\vartheta\left(\tau, P_{42}, Q_{1}\right)= & \sum_{n=1}^{\infty}\left(\sum_{Q_{1}(x)=n} P_{42}(x)\right) z^{n}=\frac{\left(b_{12}^{2}-4 b_{11} b_{22}\right)\left(b_{12}^{2}-2 b_{11} b_{22}\right)}{12 b_{22}^{3} b_{33}} z^{b_{11}}+\cdots+0 z^{b_{22}}+\ldots \\
& +0 z^{b_{33}}+\ldots+\left(\frac{\left(b_{12}^{2}-4 b_{11} b_{22}\right)\left(b_{12}^{2}-2 b_{11} b_{22}\right)}{6 b_{22}^{3} b_{33}}-\frac{4 b_{11}}{b_{22}}\right) z^{b_{11}+b_{33}}+\ldots+4 z^{b_{22}+b_{33}}+\ldots, \\
\vartheta\left(\tau, P_{44}, Q_{1}\right)= & \sum_{n=1}^{\infty}\left(\sum_{Q_{1}(x)=n} P_{44}(x)\right) z^{n}=\frac{\left(b_{12}^{2}-4 b_{11} b_{22}\right)^{2}}{8 b_{22}^{2} b_{33}^{2}} z^{b_{11}}+\cdots+0 z^{b_{22}}+\ldots \\
& +2 z^{b_{33}}+\cdots+4\left(\frac{\left(b_{12}^{2}-4 b_{11} b_{22}\right)^{2}}{16 b_{22}^{2} b_{33}^{2}}+\frac{3\left(b_{12}^{2}-4 b_{11} b_{22}\right)}{2 b_{22} b_{33}}+1\right) z^{b_{11}+b_{33}}+\ldots \\
& +4 z^{b_{22}+b_{33}}+\ldots .
\end{aligned}
$$

These generalized theta-series are linearly independent since the determinant of the fifth order constructed from the coefficients of these theta-series is not equal to zero. By virtue of (8) we have $\operatorname{dim} T\left(4, Q_{1}\right) \leq \frac{(r-1)(r+2)}{2}=5$. Hence these theta-series form the basis of the space $T\left(4, Q_{1}\right)$.

We have the following
Theorem A. Let $Q_{1}(X)$ be the nondiagonal ternary quadratic form, given by $Q_{1}(X)=b_{11} x_{1}^{2}+$ $b_{22} x_{2}^{2}+b_{33} x_{3}^{2}+b_{12} x_{1} x_{2}$, then $\operatorname{dim} T\left(4, Q_{1}\right)=5$ and the generalized theta-series with spherical polynomials $P_{k i}(k=3$ or $4 ; i$ is even $)$:

$$
\vartheta\left(\tau, P_{30}, Q_{1}\right) ; \vartheta\left(\tau, P_{32}, Q_{1}\right) ; \vartheta\left(\tau, P_{40}, Q_{1}\right) ; \vartheta\left(\tau, P_{42}, Q_{1}\right) ; \vartheta\left(\tau, P_{44}, Q_{1}\right)
$$

form the basis of the space $T\left(4, Q_{1}\right)$.

Received 11. 2. 2017
Accepted 21. 2. 2018

Faculty of Exact and Natural Sciences I. Javakhishvili Tbilisi State University University Str. 13
Tbilisi 0186
GEORGIA
E-mail: ketevan.shavgulidze@tsu.ge

