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    On the basis of the Theorem 2, )(tu can be accepted as an approximation solution for the problem 

(1)-(2). For the illustration the non-smooth and singular optimal problems are considered. The Theorem 2
is proved by the scheme given in [2, 3]. The continuity of functional minimum for the optimization 
problems governed by ordinary and functional-differential equations are investigated in  [2, 3].  
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