ON THE LAZARD RING

MALKHAZ BAKURADZE AND VLADIMIR VERSHININ

Abstract

We define a formal power series $\sum A_{i j} x^{i} y^{j}$ over the Lazard ring Λ and the formal group laws $F_{n}, n \geq 2$ over a quotient ring of Λ. For each F_{n} we construct a complex cobordism theory with singularities with the coefficient ring $\mathbb{Q}\left[p_{1}, \cdots, p_{2 n}\right]$, with parameters $p_{i},\left|p_{i}\right|=2 i$.

1. Introduction and statements

Let Λ be the universal Lazard ring and $F(x, y)=\sum a_{i j} x^{i} y^{j}$ be the universal formal group law defined over Λ [9]. By universal property of Λ, for any formal group law G over any commutative ring with unit R there is a unique ring homomorphism $r: \Lambda \rightarrow R$, such that $G(x, y)=\sum r\left(a_{i j}\right) x^{i} y^{j}$.

The formal group law of geometric cobordism F_{U} was introduced in [12]. It is proved by D.Quillen [13] that the coefficient ring of complex cobordism $M U_{*}(p t)=\mathbb{Z}\left[x_{1}, x_{2}, \ldots\right],\left|x_{i}\right|=2 i$ is naturally isomorphic as a graded ring to the universal Lazard ring. Following Quillen we will identify F_{U} with the universal Lazard formal group law.

Regardless of the geometric nature of geometric cobordism the computation of the complex cobordism ring $M U^{*}(X)$ for concrete spaces X is often a very difficult task. Various modifications of the theory of complex cobordism were introduced, for example cobordism theories with singularities [14, 15].

This note presents the formal group laws $F_{n}, n \geq 2$ over the quotient rings of the Lazard ring. By our Theorem 1.3 the formal group law F_{n} can be realized as cohomology theory with coefficient ring $\mathbb{Q}\left[p_{1}, \cdots, p_{2 n}\right]$, for some parameters $\left|p_{i}\right|=2 i$.

The hope is that the cohomology theory, which implements F_{n}, does not lose too much information and at the same time is better calculated, because the coefficient ring is a graded field with finite parameters.

Let f and g be the exponent and the logarithm of F respectively [8]. Thus

$$
F(x, y)=f(g(x)+g(y)) .
$$

Let $\omega(x)$ be the invariant differential form of F

$$
\begin{equation*}
\omega(x):=\frac{\partial F(x, y)}{\partial y}(x, 0), \omega(x)=1+\sum_{i \geq 1} w_{i} x^{i}, w_{i} \in \Lambda . \tag{1.1}
\end{equation*}
$$

The following series in $\Lambda[[x]]$ were defined in [1]

$$
\begin{equation*}
A(x, y)=\sum A_{i j} x^{i} y^{j}=F(x, y)(x \omega(y)-y \omega(x) \tag{1.2}
\end{equation*}
$$

Then $F(x, y)$ can be rewritten in the following form

$$
\begin{equation*}
F(x, y)=\frac{A(x, y)}{x \omega(y)-y \omega(x)} \tag{1.3}
\end{equation*}
$$

2010 Mathematics Subject Classification. 33E05, 55N22.
Key words and phrases. Lazard ring, Formal group law.
The first author was supported by CNRS PICS N 7736, and by Shota Rustaveli NSF grant 217-614.
The second author was supported by CNRS PICS N 7736.

Theorem 1.1. For any integer $i \geq 2$ there exit the series $W_{i}(x) \in \Lambda[[x]]$, such that the series $A(x, y)$ is expressed in the following form

$$
A(x, y)=\left(x \omega(y)+y \omega(x)-\omega^{\prime}(0) x y\right)(x \omega(y)-y \omega(x))+\sum_{i \geq 2}\left(\omega(x) W_{i}(x)-\omega(y) W_{i}(y)\right)(x y)^{i}
$$

The sum of initial three terms in Theorem 1.1 corresponds to the Abel formal group law of the form [11], [6]

$$
F(x, y)=x R(y)+y R(x)+\alpha x y
$$

The universal Buchstaber formal group law [1],[2],[3],[5], [7] can be written as follows

$$
F_{B}(x, y)=x \bar{\omega}(y)+y \bar{\omega}(x)-\bar{\omega}^{\prime}(0) x y+\frac{\bar{\omega}(x) \bar{W}_{2}(x)-\bar{\omega}(y) \bar{W}_{2}(y)}{x \bar{\omega}(y)-y \bar{\omega}(x)}(x y)^{2}
$$

with interesting specializations [4] such as the Euler formal group law [10].
In Section 2 we prove the following statement which determines $A(x, y)$ modulo $(x y)^{4}$.
Proposition 1.2. One has in $\Lambda[[x, y]] /(x y)^{4}$

$$
\begin{aligned}
A(x, y)= & \left(x \omega(y)+y \omega(x)-\omega^{\prime}(0) x y\right)(x \omega(y)-y \omega(x))+ \\
& \left(\omega(x) W_{2}(x)-\omega(y) W_{2}(y)\right) x^{2} y^{2}+ \\
& \left(\omega(x) W_{3}(x)-\omega(y) W_{3}(y)\right) x^{3} y^{3},
\end{aligned}
$$

where

$$
\begin{aligned}
W_{2}(x) & =\frac{\omega^{\prime}(x)-\omega^{\prime}(0)}{2 x} ; \\
W_{3}(x) & =\frac{\frac{1}{6}\left[\omega^{\prime \prime}(x) \omega(x)+\omega^{\prime 2}(x)-\omega^{\prime \prime}(0)-\omega^{\prime 2}(0)\right]-W_{2}(x) \omega(x)+\frac{1}{2} \omega^{\prime \prime}(0)+\frac{1}{12} x \omega^{\prime \prime \prime}(0)}{x^{2}} .
\end{aligned}
$$

The Abel formal groups can be realized as cohomology theory. The formal group law F_{B} can be realized after localized out of 2 [11].

Let us consider the homomorphism from the Lazard ring to its quotient by the ideal generated by $A_{n+1 j}, j>n+1$, for fixed $n \geq 2$. Let F_{n} be the formal group law classified by the quotient homomorphism

$$
\begin{equation*}
\phi_{n}: \Lambda \rightarrow \Lambda /\left(A_{n+1 j}, j>n+1\right) . \tag{1.4}
\end{equation*}
$$

In this way we get the inverse system of the formal groups laws. The morphism from F_{n+1} to F_{n} is given by natural projection of the corresponding coefficient rings $\Lambda_{n+1} \rightarrow \Lambda_{n}$.

The formal group laws F_{n} can be realized but over the rationals. In particular $\Lambda \otimes \mathbb{Q}=$ $\mathbb{Q}\left[\mathbf{C P}_{1}, \mathbf{C P}_{2}, \cdots\right]$. Theorem 1.3 says that for any $n \geq 2$ the projection (1.4) over the rationals

$$
\begin{equation*}
\rho_{n}=\phi_{n} \otimes \mathbb{Q}: \Lambda \otimes \mathbb{Q} \rightarrow \Lambda_{n} \otimes \mathbb{Q} \tag{1.5}
\end{equation*}
$$

is the quotient map by the ideal generated by the elements

$$
\begin{equation*}
\left\{\mathbf{C} \mathbf{P}_{k}-P_{k}\left(\mathbf{C P}_{1}, \cdots, \mathbf{C} \mathbf{P}_{2 n}\right), k>2 n\right\} \tag{1.6}
\end{equation*}
$$

where P_{k} are some polynomials. Moreover, (1.3) forms a regular sequence and therefore defines an exact cohomology theory $\mathcal{H}^{*}(n)$, the complex cobordism with singularities. The coefficient ring of $\mathcal{H}^{*}(n)(p t)$ equals to $\mathbb{Q}\left[p_{1}, p_{2}, \cdots, p_{2 n}\right]$, where $p_{i}=\rho_{n}\left(\mathbf{C P}_{i}\right)$.

Theorem 1.3. Let F_{n} be the formal group law over $\Lambda_{n} \otimes \mathbb{Q}$ in (1.5). Then F_{n} uniquely determined by the property that its classifying map ρ_{n} kills the coefficients of the series $W_{n+1}(x)$. Equivalently, for the invariant differential form of F_{n}

$$
\omega_{F_{n}}(x)=1+\sum v_{i} x^{i}
$$

the coefficient $v_{k}, k>2 n$ is decomposable in $v_{1}, \cdots, v_{2 n}$.

2. Preliminaries and Proof of Theorem 1.2

Because of antisymmetry

$$
\begin{aligned}
A(x, y)= & x^{2}-y^{2}-A_{12} x y^{2}+A_{12} x^{2} y \\
& -x^{2}\left(A_{23} y^{3}+A_{24} y^{4}+\cdots+A_{2 i} y^{i}+\cdots\right) \\
& +y^{2}\left(A_{23} x^{3}+A_{24} x^{4}+\cdots+A_{2 i} x^{i}+\cdots\right) \\
& -x^{3}\left(A_{34} y^{4}+A_{35} y^{5}+\cdots+A_{3 i} y^{i}+\cdots\right)+ \\
& +y^{3}\left(A_{34} x^{4}+A_{35} x^{5}+\cdots+A_{3 i} x^{i}+\cdots\right) \cdots
\end{aligned}
$$

where $A_{12}=w_{1}, A_{23}=\frac{1}{2} w_{3}$ in terms of the invariant differential form.
Let $\omega(x)=1+w_{1} x+w_{2} x^{2}+\cdots$ as in (1.1), and f and g be the exponent and the logarithm of F.

Then we have by definition

$$
\begin{array}{ll}
f^{\prime}(g(x))=\omega(f(g(x)))=\omega(x), & \text { as } f^{\prime}(x)=1 / g^{\prime}(f(x))=\omega(f(x)), \\
f^{\prime \prime}\left(g(x)=\omega(x) \omega^{\prime}(x),\right. & \text { as } f^{\prime \prime}\left(g(x) g^{\prime}(x)=\omega^{\prime}(x),\right. \\
f^{\prime \prime \prime}(g(x))=\omega^{2}(x) \omega(x)^{\prime \prime}+\omega(x) \omega^{2}(x), & \text { as } f^{\prime \prime \prime}(g(x)) g^{\prime}(x)=\left(\omega^{\prime}(x) \omega(x)\right)^{\prime}, \\
g^{\prime \prime}(0)=-\omega^{\prime}(0), & \\
g^{\prime \prime \prime}(0)=-\omega(0)^{\prime \prime}+2 \omega^{\prime 2}(0) . &
\end{array}
$$

Differentiating

$$
\left.\frac{\partial F}{\partial y}=f^{\prime}(g(x)+g(y)) g^{\prime}(y)\right)
$$

and taking into account (2.4) we have

$$
\frac{\partial^{2} F}{\partial y^{2}}(x, 0)=f^{\prime \prime}(g(x))+f^{\prime}(g(x)) g^{\prime \prime}(0)=\left(\omega^{\prime}(x)-\omega^{\prime}(0)\right) \omega(x)
$$

So $W_{2}(x)$ is correctly defined: the left side of (2) divisible by 2 . So is the right side and $\omega(x)$ is invertible by definition.

Applying $\frac{\partial^{2}}{\partial y^{2}}$ to (1.2) we have

$$
\left.\frac{\partial^{2} A}{\partial y^{2}}=\frac{\partial^{2} F(x, y)}{\partial y^{2}}(x \omega(y)-y \omega(x))+2 \frac{\partial F(x, y)}{\partial y}\left(x \omega^{\prime}(y)\right)-\omega(x)\right)+F(x, y) x \omega^{\prime \prime}(y)
$$

It follows that $A(x, y)$ modulo $(x y)^{3}$ equals to

$$
\begin{array}{r}
\frac{\partial^{2} A}{\partial y^{2}}(x, 0)=\left(\omega^{\prime}(x) \omega(x)-\omega^{\prime}(0) \omega(x)\right) x+ \\
\left.2 \omega(x)\left(x \omega^{\prime}(0)\right)-\omega(x)\right)+ \\
\left.x^{2} \omega^{\prime \prime}(0)\right)
\end{array}
$$

Thus $A(x, y)$ modulo $(x y)^{2}$ equals the sum of the first two terms in Theorem 1.2. The next step is

$$
\frac{\partial^{3} F}{\partial y^{3}}=f^{\prime \prime \prime}(g(x)+g(y)) g^{\prime}(y)^{3}+3 f^{\prime \prime}(g(x)+g(y)) g^{\prime}(y) g^{\prime \prime}(y)+f^{\prime}(g(x)+g(y)) g^{\prime \prime \prime}(y)
$$

$$
\begin{equation*}
\frac{\partial^{3} F}{\partial y^{3}}(x, 0)=f^{\prime \prime \prime}(g(x))+3 f^{\prime \prime}(g(x)) g^{\prime \prime}(0)+f^{\prime}(g(x)) g^{\prime \prime \prime}(0) \tag{2.6}
\end{equation*}
$$

and taking (2.3) and (2.5)

$$
\begin{align*}
& \frac{\partial^{3} F}{\partial y^{3}}(x, 0)=\omega^{2}(x) \omega(x)^{\prime \prime}+\omega(x) \omega^{\prime 2}(x)+3 \omega^{\prime}(x) \omega(x) g^{\prime \prime}(0)+\omega(x) g^{\prime \prime \prime}(0) . \tag{2.7}\\
& \frac{\partial^{3} F}{\partial y^{3}}(x, 0)= \\
& \omega(x)\left[\omega(x) \omega(x)^{\prime \prime}+\omega^{\prime 2}(x)-3 \omega^{\prime}(x) \omega^{\prime}(0)-\omega(0)^{\prime \prime}+2 \omega^{\prime 2}(0)\right]= \\
& \omega(x)\left[\omega(x) \omega(x)^{\prime \prime}+\omega^{\prime 2}(x)-3 \omega^{\prime}(x) \omega^{\prime}(0)-\omega(0)^{\prime \prime}+3 \omega^{\prime 2}(0)-\omega^{\prime 2}(0)\right]= \\
& \omega(x)\left[\omega(x) \omega(x)^{\prime \prime}+\omega^{\prime 2}(x)-3 \omega^{\prime}(0)\left(\omega^{\prime}(x)-\omega^{\prime}(0)\right)-\omega(0)^{\prime \prime}-\omega^{\prime 2}(0)\right]= \\
& \omega(x)\left[\omega(x) \omega(x)^{\prime \prime}+\omega^{2}(x)-\omega(0)^{\prime \prime}-\omega^{\prime 2}(0)-6 x \omega^{\prime}(0) W_{2}(x)\right]
\end{align*}
$$

So we can define

$$
\widetilde{\omega}(x):=\frac{\omega(x) \omega(x)^{\prime \prime}+\omega^{\prime 2}(x)-\omega(0)^{\prime \prime}-\omega^{\prime 2}(0)}{6 x}
$$

and get

$$
\begin{equation*}
\frac{\partial^{3} F(x, y)}{\partial y^{3}}(x, 0)=6 x \omega(x)\left(-\omega^{\prime}(0) W_{2}(x)+\widetilde{\omega}(x)\right) \tag{2.8}
\end{equation*}
$$

To compute $A(x, y)$ modulo $(x y)^{4}$ it remains following term

$$
\begin{equation*}
\sum_{i>3} A_{i j} x^{i} y^{3}=\frac{1}{6} \frac{\partial^{3} A}{\partial y^{3}}(x, 0) y^{3}+A_{23} x^{2} y^{3} \tag{2.9}
\end{equation*}
$$

One has

$$
\begin{aligned}
\frac{\partial^{3} A}{\partial y^{3}}= & \frac{\partial^{3} F(x, y)}{\partial y^{3}}(x \omega(y)-y \omega(x))+ \\
& 3 \frac{\partial^{2} F(x, y)}{\partial y^{2}}\left(x \omega^{\prime}(y)-\omega(x)\right)+ \\
& 3 \frac{\partial F(x, y)}{\partial y} x \omega^{\prime \prime}(y)+F(x, y) x \omega^{\prime \prime \prime}(y) .
\end{aligned}
$$

Thus

$$
\begin{aligned}
\frac{\partial^{3} A}{\partial y^{3}}(x, 0)= & 6 x^{2} \omega(x)\left(-\omega^{\prime}(0) W_{2}(x)+\widetilde{\omega}(x)\right)+ \\
& 6 x W_{2}(x) \omega(x)\left(x \omega^{\prime}(0)-\omega(x)\right)+ \\
& 3 x \omega(x) \omega^{\prime \prime}(0)+ \\
& x^{2} \omega^{\prime \prime \prime}(0)= \\
& 6 x^{2} \omega(x) \widetilde{\omega}(x)-6 x W_{2}(x) \omega^{2}(x)+3 x \omega(x) \omega^{\prime \prime}(0)+x^{2} \omega^{\prime \prime \prime}(0) .
\end{aligned}
$$

Therefore we get by (2.9)

$$
\sum_{i \geq 4} A_{i j} x^{i} y^{3}=x^{2} \omega(x) \widetilde{\omega}(x) y^{3}-x W_{2}(x) \omega^{2}(x) y^{3}+\frac{1}{2} \omega^{\prime \prime}(0) x \omega(x) y^{3}
$$

Here $A_{23}=w_{3} / 2, \omega^{\prime \prime \prime}(0)=6 w_{3}, \omega^{\prime \prime}(0)=2 w_{2}$.
This implies

$$
\sum_{i \geq 4} A_{i j} x^{i} y^{3}=\omega(x) W_{3}(x) x^{3} y^{3}
$$

where

$$
x^{2} W_{3}(x)=x \widetilde{\omega}(x)-W_{2}(x) \omega(x)+\frac{1}{2} \omega^{\prime \prime}(0)+\frac{1}{12} x \omega^{\prime \prime \prime}(0) .
$$

3. Proof of Theorem 1.1

Let $W_{i}(x) \in \Lambda(x), i \geq 2$ be defined by

$$
\begin{equation*}
\omega(x) W_{i}(x) x^{n} y^{n}=\sum_{i \geq n} A_{i n} x^{i} y^{n}=\frac{1}{n!} \frac{\partial^{n} A}{\partial y^{n}}(x, 0) y^{n}+A_{n-1 n} x^{n-1} y^{n}+\cdots+A_{2 n} x^{2} y^{n} \tag{3.1}
\end{equation*}
$$

We note that $W_{i}(x)$ thus defined fits into Theorem 1.1: factor $\omega(x)$ is motivated by the initial three terms, which corresponds the Abel formal group law in the introduction. But this factor is invertible as $\omega(0)=1$, so this is not a problem. So the first equality is a correct definition of $W_{i}(x)$. The second equality is just the method of undetermined coefficients.

Now we discuss how to work out explicit calculations. We need to compute $\frac{\partial^{n} A}{\partial y^{n}}(x, 0)$ in terms of $\omega(x)$.

Recall

$$
g^{\prime}(x)=1+\mathbf{C} \mathbf{P}_{1} x+\cdots+\mathbf{C} \mathbf{P}_{k} x^{k}+\cdots
$$

where $\mathbf{C P}_{k}$ the class represented by the complex projective space of dimension $2 k$. The coefficients of $g^{(i)}(x)$ for $i \geq 1$ are in the Lazard ring and

$$
\begin{equation*}
g^{(n)}(0)=(n-1)!\mathbf{C} \mathbf{P}_{n-1} . \tag{3.2}
\end{equation*}
$$

As we work in the Lazard ring, it is better to compute $f^{(n)}(g(x))$ in terms of $\omega, \omega^{\prime}, \cdots, \omega^{(i)}$ by applying

$$
\begin{equation*}
f^{\prime}(g)=1 / g^{\prime}(x)=\omega(x) ; \quad f^{(n)}(g(x))=\omega(x)\left(f^{n-1}(g(x))\right)^{\prime} . \tag{3.3}
\end{equation*}
$$

Proposition 3.1. Let $A(x, y), F(y)$ be as above and $P_{n, k}$ be the Bell polynomials. Then

$$
\begin{equation*}
\frac{\partial^{n} A}{\partial y^{n}}(x, 0)=-n \omega(x) \frac{\partial^{n-1} F}{\partial y^{n-1}}(x, 0)+x \sum_{i=0}^{n} w_{i} \frac{n!}{(n-i)!} \frac{\partial^{n-i} F}{\partial y^{n-i}}(x, 0) \tag{3.4}
\end{equation*}
$$

where

$$
\begin{equation*}
\frac{\partial^{m} F(x, y)}{\partial y^{m}}(x, 0)=\sum_{k=1}^{m} f^{(k)}(g(t)) P_{m, k}\left(\mathbf{C P}_{1}, \cdots,(i-1)!\mathbf{C} \mathbf{P}_{i-1}, \cdots,(m-k)!\mathbf{C} \mathbf{P}_{m-k}\right) \tag{3.5}
\end{equation*}
$$

Proof. We start with (1.1).
For computation of $\frac{\partial^{n} F(x, y)}{\partial y^{n}}(x, 0)$ we need the chain rule expressed $\frac{\partial^{n}}{\partial t^{n}} h(g(t))$ in terms of Bell's polynomials $P_{n, k}$

$$
\left.\frac{\partial^{n}}{\partial t^{n}} h(g(t))=\sum_{k=1}^{n} h^{(k)}(g(t)) P_{n, k}\left(g^{\prime}(t), g^{\prime \prime}(t), \cdots, g^{(n-k+1}\right)(t)\right)
$$

So that for $h=f(g(x)+g(y))$ we have

$$
\left.\frac{\partial^{n} F}{\partial y^{n}}(x, 0)=\sum_{k=1}^{n} f^{(k)}(g(x)) P_{n, k}\left(g^{\prime}(0), g^{\prime \prime}(0), \cdots, g^{(n-k+1}\right)(0)\right)
$$

and apply (3.2) to get (3.5).
For computation of $\frac{\partial^{n} A}{\partial y^{n}}(x, 0)$ we apply the Cartan formula for

$$
F=F(x, y) \quad \text { and } \quad G=x \omega(y)-y \omega(x)
$$

as in (1.2).

$$
\frac{\partial^{n}}{\partial y^{n}}(F \cdot G)(x, 0)=\sum_{0}^{n}\binom{n}{k} \frac{\partial^{n-k} F}{\partial y^{n-k}}(x, 0) \frac{\partial^{k} G}{\partial y^{k}}(x, 0)
$$

Finally to get (3.4) note that

$$
\begin{aligned}
& G(x, 0)=x \\
& \frac{\partial G}{\partial y}(x, 0)=x w_{1}-\omega(x) \\
& \frac{\partial^{k} G}{\partial y^{k}}(x, 0)=x \omega_{k-1}(0)=x k!w_{k}, \text { for } k \geq 2
\end{aligned}
$$

4. Proof of Theorem 1.3

Let $A(x, y)$ be the series in (1.2) and g, f and $\omega=1 / g^{\prime}$ as in Section 2. Note that one has modulo decomposable coefficients

$$
F(x, y)=f(g(x)+g(y))=g(x)+g(y)+\sum f_{k}(x+y)^{k+1}
$$

and as $g(x)=x+\sum \frac{\mathbf{C P}}{i+1} x^{i+1}$
$A(x, y)=(x-y)\left(\sum \frac{\mathbf{C} \mathbf{P}_{i}}{i+1} x^{i+1}+\sum \frac{\mathbf{C} \mathbf{P}_{i}}{i+1} y^{i+1}+\sum f_{i+j-1}\binom{i+j}{i} x^{i} y^{j}\right)+(x+y)(x w(y)-y w(x))$.
So that killing $A_{n+1 j}, j>n+1$, i.e., killing the coefficients of W_{n+1}, is equivalent to killing the elements $\left\{f_{k}+\right.$ some decomposable terms, $\left.k>2 n\right\}$ in $\Lambda \otimes \mathbb{Q}$. But modulo decomposables f_{k} coincide with $\mathbf{C P}_{k}$ up to some factor.

As explained above W_{n+1} can be explicitly written in terms of the invariant differential form $\omega_{F_{n}}=1 /\left(1+\sum \rho_{n}\left(\mathbf{C P}_{i}\right) x^{i}\right)$. This is convenient for actually constructing a regular sequence and, thus, the cohomology theory that implements F_{n}.

References

[1] M. Bakuradze, On the Buchstaber formal group law and some related genera, Proc. Steklov Math. Inst., 286(2014), 7-21.
[2] M. Bakuradze, Formal group laws by Buchstaber, Krichever and Nadiradze coincide, Uspekhi Mat. Nauk, 68:3 (2013), 189-190.
[3] M. Bakuradze, Computing the Krichever genus, J. Homotopy Relat. Struct, 9, 1(2014), 85-93.
[4] M. Bakuradze, V. Vershinin, On addition theorems related to elliptic integrals, to appear.
[5] V. M. Buchstaber, Functional equations associated with addition theorems for elliptic functions and two-valued groups, Uspekhi Mat. Nauk, 3, 273 (1990), 185-186.
[6] V.M. Buchshtaber, A. N. Kholodov, Formal groups, functional equations and generalized cohomology theories, (Russian) Mat. Sb. 181, 1 (1990), 75-94.
[7] V. M. Buchstaber, T. E. Panov, Toric Topology, Mathematical Surveys and Monographs, 204, Amer. Math. Soc., 2015.
[8] M. Hazewinkel, Formal Groups and Applications, Elsevier, 1978.
[9] M, Lazard, Sur les groupes de Lie formels à un paramètre, Bulletin Soc. Math. France, 83(1955), 251-274
[10] S. Ochanine, Sur les genres multiplicatifs definis par des integrales elliptiques, Topology 26:2 (1987), 143-151.
[11] R. Nadiradze, "Formal group and cohomology theories", Dissertation for the Doctoral Science Degree, Tbilisi 1995
[12] S. P. Novikov, The methods of algebraic topology from the viewpoint of cobordism theory, Math. USSR-Izv. 1:4 (1967), 827-913
[13] D. Quillen, On the formal group laws of unoriented and complex cobordism theory, Bull. Amer. Math. Soc. 75 (1969), 1293-1298.
[14] N.-A. Baas On Bordism Theory of Manifolds with Singularities, Mathematica Scandinavica, Vol. 33 (1973), 279-302.
[15] V. V. Vershinin, Cobordism s and spectral sequences, AMS, Translations of Math. monographs, 130. 1993.
Faculty of exact and natural sciences, Iv. Javakhishyili Tbilisi State University, Georgia E-mail address: malkhaz.bakuradze@tsu.ge

Universit de Motpellier
E-mail address: vershini@uni-montp2.fr

