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Abstract. We define a formal power series
∑

Aijx
iyj over the Lazard ring Λ and the formal

group laws Fn, n ≥ 2 over a quotient ring of Λ. For each Fn we construct a complex cobordism
theory with singularities with the coefficient ring Q[p1, · · · , p2n], with parameters pi, |pi| = 2i.

1. Introduction and statements

Let Λ be the universal Lazard ring and F (x, y) =
∑
aijx

iyj be the universal formal group
law defined over Λ [9]. By universal property of Λ, for any formal group law G over any
commutative ring with unit R there is a unique ring homomorphism r : Λ → R, such that
G(x, y) =

∑
r(aij)x

iyj .
The formal group law of geometric cobordism FU was introduced in [12]. It is proved by

D.Quillen [13] that the coefficient ring of complex cobordism MU∗(pt) = Z[x1, x2, ...], |xi| = 2i
is naturally isomorphic as a graded ring to the universal Lazard ring. Following Quillen we will
identify FU with the universal Lazard formal group law.

Regardless of the geometric nature of geometric cobordism the computation of the complex
cobordism ring MU∗(X) for concrete spaces X is often a very difficult task. Various modifica-
tions of the theory of complex cobordism were introduced, for example cobordism theories with
singularities [14, 15].

This note presents the formal group laws Fn, n ≥ 2 over the quotient rings of the Lazard ring.
By our Theorem 1.3 the formal group law Fn can be realized as cohomology theory with coefficient
ring Q[p1, · · · , p2n], for some parameters |pi| = 2i.

The hope is that the cohomology theory, which implements Fn, does not lose too much infor-
mation and at the same time is better calculated, because the coefficient ring is a graded field
with finite parameters.

Let f and g be the exponent and the logarithm of F respectively [8]. Thus

F (x, y) = f(g(x) + g(y)).

Let ω(x) be the invariant differential form of F

(1.1) ω(x) :=
∂F (x, y)

∂y
(x, 0), ω(x) = 1 +

∑
i≥1

wix
i, wi ∈ Λ.

The following series in Λ[[x]] were defined in [1]

(1.2) A(x, y) =
∑

Aijx
iyj = F (x, y)(xω(y)− yω(x).

Then F (x, y) can be rewritten in the following form

(1.3) F (x, y) =
A(x, y)

xω(y)− yω(x)
.
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Theorem 1.1. For any integer i ≥ 2 there exit the series Wi(x) ∈ Λ[[x]], such that the series
A(x, y) is expressed in the following form

A(x, y) =
(
xω(y) + yω(x)− ω′(0)xy

)(
xω(y)− yω(x)

)
+
∑
i≥2

(
ω(x)Wi(x)− ω(y)Wi(y)

)
(xy)i.

The sum of initial three terms in Theorem 1.1 corresponds to the Abel formal group law of the
form [11], [6]

F (x, y) = xR(y) + yR(x) + αxy.

The universal Buchstaber formal group law [1],[2],[3],[5], [7] can be written as follows

FB(x, y) = xω̄(y) + yω̄(x)− ω̄′(0)xy +
ω̄(x)W̄2(x)− ω̄(y)W̄2(y)

xω̄(y)− yω̄(x)
(xy)2,

with interesting specializations [4] such as the Euler formal group law [10].

In Section 2 we prove the following statement which determines A(x, y) modulo (xy)4.

Proposition 1.2. One has in Λ[[x, y]]/(xy)4

A(x, y) =
(
xω(y) + yω(x)− ω′(0)xy

)(
xω(y)− yω(x)

)
+(

ω(x)W2(x)− ω(y)W2(y)
)
x2y2+(

ω(x)W3(x)− ω(y)W3(y)
)
x3y3,

where

W2(x) =
ω′(x)− ω′(0)

2x
;

W3(x) =
1
6 [ω′′(x)ω(x) + ω′2(x)− ω′′(0)− ω′2(0)]−W2(x)ω(x) + 1

2ω
′′(0) + 1

12xω
′′′(0)

x2
.

The Abel formal groups can be realized as cohomology theory. The formal group law FB can
be realized after localized out of 2 [11].

Let us consider the homomorphism from the Lazard ring to its quotient by the ideal generated
by An+1 j , j > n + 1, for fixed n ≥ 2. Let Fn be the formal group law classified by the quotient
homomorphism

(1.4) φn : Λ→ Λ/(An+1 j , j > n+ 1).

In this way we get the inverse system of the formal groups laws. The morphism from Fn+1 to
Fn is given by natural projection of the corresponding coefficient rings Λn+1 → Λn.

The formal group laws Fn can be realized but over the rationals. In particular Λ ⊗ Q =
Q[CP1,CP2, · · · ]. Theorem 1.3 says that for any n ≥ 2 the projection (1.4) over the rationals

(1.5) ρn = φn ⊗Q : Λ⊗Q→ Λn ⊗Q
is the quotient map by the ideal generated by the elements

(1.6) {CPk − Pk

(
CP1, · · · ,CP2n

)
, k > 2n},

where Pk are some polynomials. Moreover, (1.3) forms a regular sequence and therefore defines an
exact cohomology theory H∗(n), the complex cobordism with singularities. The coefficient ring of
H∗(n)(pt) equals to Q[p1, p2, · · · , p2n], where pi = ρn(CPi).

Theorem 1.3. Let Fn be the formal group law over Λn⊗Q in (1.5). Then Fn uniquely determined
by the property that its classifying map ρn kills the coefficients of the series Wn+1(x). Equivalently,
for the invariant differential form of Fn

ωFn
(x) = 1 +

∑
vix

i,

the coefficient vk, k > 2n is decomposable in v1, · · · , v2n.
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2. Preliminaries and Proof of Theorem 1.2

Because of antisymmetry

A(x, y) =x2 − y2 −A12xy
2 +A12x

2y

− x2(A23y
3 +A24y

4 + · · ·+A2iy
i + · · · )

+ y2(A23x
3 +A24x

4 + · · ·+A2ix
i + · · · )

− x3(A34y
4 +A35y

5 + · · ·+A3iy
i + · · · )+

+ y3(A34x
4 +A35x

5 + · · ·+A3ix
i + · · · ) · · ·

where A12 = w1, A23 = 1
2w3 in terms of the invariant differential form.

Let ω(x) = 1 + w1x + w2x
2 + · · · as in (1.1), and f and g be the exponent and the logarithm

of F .
Then we have by definition

f ′(g(x)) = ω(f(g(x))) = ω(x), as f ′(x) = 1/g′(f(x)) = ω(f(x)),(2.1)

f ′′(g(x) = ω(x)ω′(x), as f ′′(g(x)g′(x) = ω′(x),(2.2)

f ′′′(g(x)) = ω2(x)ω(x)′′ + ω(x)ω′2(x), as f ′′′(g(x))g′(x) = (ω′(x)ω(x))′,(2.3)

g′′(0) = −ω′(0),(2.4)

g′′′(0) = −ω(0)′′ + 2ω′2(0).(2.5)

Differentiating

∂F

∂y
= f ′(g(x) + g(y))g′(y)).

and taking into account (2.4) we have

∂2F

∂y2
(x, 0) = f ′′(g(x)) + f ′(g(x))g′′(0) = (ω′(x)− ω′(0))ω(x).

So W2(x) is correctly defined: the left side of (2) divisible by 2. So is the right side and ω(x)
is invertible by definition.

Applying ∂2

∂y2 to (1.2) we have

∂2A

∂y2
=
∂2F (x, y)

∂y2
(xω(y)− yω(x)) + 2

∂F (x, y)

∂y
(xω′(y))− ω(x)) + F (x, y)xω′′(y).

It follows that A(x, y) modulo (xy)3 equals to

∂2A

∂y2
(x, 0) = (ω′(x)ω(x)− ω′(0)ω(x))x+

2ω(x)(xω′(0))− ω(x))+

x2ω′′(0)).

Thus A(x, y) modulo (xy)2 equals the sum of the first two terms in Theorem 1.2.
The next step is

∂3F

∂y3
= f ′′′(g(x) + g(y))g′(y)3 + 3f ′′(g(x) + g(y))g′(y)g′′(y) + f ′(g(x) + g(y))g′′′(y).
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(2.6)
∂3F

∂y3
(x, 0) = f ′′′(g(x)) + 3f ′′(g(x))g′′(0) + f ′(g(x))g′′′(0).

and taking (2.3) and (2.5)

(2.7)
∂3F

∂y3
(x, 0) = ω2(x)ω(x)′′ + ω(x)ω′2(x) + 3ω′(x)ω(x)g′′(0) + ω(x)g′′′(0).

∂3F

∂y3
(x, 0) =

ω(x)[ω(x)ω(x)′′ + ω′2(x)− 3ω′(x)ω′(0)− ω(0)′′ + 2ω′2(0)] =

ω(x)[ω(x)ω(x)′′ + ω′2(x)− 3ω′(x)ω′(0)− ω(0)′′ + 3ω′2(0)− ω′2(0)] =

ω(x)[ω(x)ω(x)′′ + ω′2(x)− 3ω′(0)(ω′(x)− ω′(0))− ω(0)′′ − ω′2(0)] =

ω(x)[ω(x)ω(x)′′ + ω′2(x)− ω(0)′′ − ω′2(0)− 6xω′(0)W2(x)].

So we can define

ω̃(x) :=
ω(x)ω(x)′′ + ω′2(x)− ω(0)′′ − ω′2(0)

6x

and get

(2.8)
∂3F (x, y)

∂y3
(x, 0) = 6xω(x)

(
−ω′(0)W2(x) + ω̃(x)

)
.

To compute A(x, y) modulo (xy)4 it remains following term

(2.9)
∑
i>3

Aijx
iy3 =

1

6

∂3A

∂y3
(x, 0)y3 +A23x

2y3.

One has

∂3A

∂y3
=
∂3F (x, y)

∂y3
(xω(y)− yω(x))+

3
∂2F (x, y)

∂y2
(xω′(y)− ω(x))+

3
∂F (x, y)

∂y
xω′′(y) + F (x, y)xω′′′(y).

Thus

∂3A

∂y3
(x, 0) =6x2ω(x) (−ω′(0)W2(x) + ω̃(x)) +

6xW2(x)ω(x)(xω′(0)− ω(x))+

3xω(x)ω′′(0)+

x2ω′′′(0) =

6x2ω(x)ω̃(x)− 6xW2(x)ω2(x) + 3xω(x)ω′′(0) + x2ω′′′(0).

Therefore we get by (2.9)
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∑
i≥4

Aijx
iy3 =x2ω(x)ω̃(x)y3 − xW2(x)ω2(x)y3 +

1

2
ω′′(0)xω(x)y3

Here A23 = w3/2, ω′′′(0) = 6w3, ω′′(0) = 2w2.

This implies ∑
i≥4

Aijx
iy3 = ω(x)W3(x)x3y3,

where

x2W3(x) = xω̃(x)−W2(x)ω(x) +
1

2
ω′′(0) +

1

12
xω′′′(0).

�

3. Proof of Theorem 1.1

Let Wi(x) ∈ Λ(x), i ≥ 2 be defined by

(3.1) ω(x)Wi(x)xnyn =
∑
i≥n

Ainx
iyn =

1

n!

∂nA

∂yn
(x, 0)yn +An−1nx

n−1yn + · · ·+A2nx
2yn.

We note that Wi(x) thus defined fits into Theorem 1.1: factor ω(x) is motivated by the initial
three terms, which corresponds the Abel formal group law in the introduction. But this factor
is invertible as ω(0) = 1, so this is not a problem. So the first equality is a correct definition of
Wi(x). The second equality is just the method of undetermined coefficients.

Now we discuss how to work out explicit calculations. We need to compute ∂nA
∂yn (x, 0) in terms

of ω(x).
Recall

g′(x) = 1 + CP1x+ · · ·+ CPkx
k + · · · ,

where CPk the class represented by the complex projective space of dimension 2k. The coefficients
of g(i)(x) for i ≥ 1 are in the Lazard ring and

(3.2) g(n)(0) = (n− 1)!CPn−1.

As we work in the Lazard ring, it is better to compute f (n)(g(x)) in terms of ω, ω′, · · · , ω(i) by
applying

(3.3) f ′(g) = 1/g′(x) = ω(x); f (n)(g(x)) = ω(x)(fn−1(g(x)))′.

Proposition 3.1. Let A(x, y), F (y) be as above and Pn,k be the Bell polynomials. Then

(3.4)
∂nA

∂yn
(x, 0) = −nω(x)

∂n−1F

∂yn−1
(x, 0) + x

n∑
i=0

wi
n!

(n− i)!
∂n−iF

∂yn−i
(x, 0);

where

(3.5)
∂mF (x, y)

∂ym
(x, 0) =

m∑
k=1

f (k)(g(t))Pm,k(CP1, · · · , (i− 1)!CPi−1, · · · , (m− k)!CPm−k).

Proof. We start with (1.1).

For computation of ∂nF (x,y)
∂yn (x, 0) we need the chain rule expressed ∂n

∂tnh(g(t)) in terms of Bell’s

polynomials Pn,k

∂n

∂tn
h(g(t)) =

n∑
k=1

h(k)(g(t))Pn,k(g′(t), g′′(t), · · · , g(n−k+1)(t)).
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So that for h = f(g(x) + g(y)) we have

∂nF

∂yn
(x, 0) =

n∑
k=1

f (k)(g(x))Pn,k(g′(0), g′′(0), · · · , g(n−k+1)(0))

and apply (3.2) to get (3.5).

For computation of ∂nA
∂yn (x, 0) we apply the Cartan formula for

F = F (x, y) and G = xω(y)− yω(x)

as in (1.2).

∂n

∂yn
(F ·G)(x, 0) =

n∑
0

(
n

k

)
∂n−kF

∂yn−k
(x, 0)

∂kG

∂yk
(x, 0).

Finally to get (3.4) note that

G(x, 0) = x,

∂G

∂y
(x, 0) = xw1 − ω(x),

∂kG

∂yk
(x, 0) = xωk−1(0) = xk!wk, for k ≥ 2.

�

4. Proof of Theorem 1.3

Let A(x, y) be the series in (1.2) and g, f and ω = 1/g′ as in Section 2. Note that one has
modulo decomposable coefficients

F (x, y) = f(g(x) + g(y)) = g(x) + g(y) +
∑

fk(x+ y)k+1,

and as g(x) = x+
∑ CPi

i+1 x
i+1

A(x, y) = (x−y)
(∑ CPi

i+ 1
xi+1+

∑ CPi

i+ 1
yi+1+

∑
fi+j−1

(
i+ j

i

)
xiyj

)
+(x+y)(xw(y)−yw(x)).

So that killing An+1 j , j > n + 1, i.e., killing the coefficients of Wn+1, is equivalent to killing
the elements {fk + some decomposable terms, k > 2n} in Λ ⊗ Q. But modulo decomposables fk
coincide with CPk up to some factor.

As explained above Wn+1 can be explicitly written in terms of the invariant differential form
ωFn

= 1/(1 +
∑
ρn(CPi)x

i). This is convenient for actually constructing a regular sequence and,
thus, the cohomology theory that implements Fn.

�
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